Пожалуй, наиболее поразительным свойством человеческого интеллекта является способность принимать правильные решения в обстановке неполной и нечеткой информации. Построение моделей приближенных рассуждений человека и использование их в компьютерных системах будущих поколений представляет сегодня одну из важнейших проблем науки.

Значительное продвижение в этом направлении сделано 30 лет тому назад профессором Калифорнийского университета (Беркли) Лотфи А. Заде (Lotfi A. Zadeh). Его работа «Fuzzy Sets», появившаяся в 1965 г. в журнале Information and Control, N-8, заложила основы моделирования интеллектуальной деятельности человека и явилась начальным толчком к развитию новой математической теории.

Л. Заде расширил классическое канторовское понятие множества, допустив, что характеристическая функция (функция принадлежности элемента множеству) может принимать любые значения в интервале [0; 1], а не только значения 0 либо 1. Такие множества были названы им нечеткими (fuzzy). Он определил также ряд операций над нечеткими множествами и предложил обобщение известных методов логического вывода modus ponens и modus tollens.

Введя затем понятие лингвистической переменной и допустив, что в качестве ее значений (термов) выступают нечеткие множества, Л. Заде создал аппарат для описания процессов интеллектуальной деятельности, включая нечеткость и неопределенность выражений.

Дальнейшие работы профессора Л. Заде и его последователей заложили прочный фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику.

Уже к 1990 г. по этой проблематике опубликовано свыше 10000 работ, а число исследователей достигло 10000, причем в США,

Европе и СССР по 200-300 человек, около 1000 — в Японии, 2000 3000 — в Индии и около 5000 исследователей в Китае.

В последние 5-7 лет началось использование новых методов и моделей в промышленности и в военном деле. Спектр приложений их широк: от управления процессом отправления и остановки поезда метрополитена, управления грузовыми лифтами и доменной печью до стиральных машин, пылесосов и СВЧ-печей. При этом нечеткие системы позволяют повысить качество продукции при уменьшении ресурсо- и энергозатрат и обеспечивают более высокую устойчивость к воздействию мешающих факторов по сравнению с традиционными системами автоматического управления.

Другими словами, новые подходы позволяют расширить сферу приложения систем автоматизации за пределы применимости классической теории. В этом плане любопытна точка зрения Л. Заде: «Я считаю, что излишнее стремление к точности стало оказывать действие, сводящее на нет теорию управления и теорию систем, так как оно приводит к тому, что исследования в этой области сосредоточиваются на тех и только тех проблемах, которые поддаются точному решению. В результате многие классы важных проблем, в которых данные, цели и ограничения являются слишком сложными или плохо определенными для того, чтобы допустить точный математический анализ, оставались и остаются в стороне по той причине, что они не поддаются математической трактовке. Для того чтобы сказать что-либо существенное для проблем подобного рода, мы должны отказаться от наших требований точности и допустить результаты, которые являются несколько размытыми или неопределенными».

Смещение центра исследований нечетких систем в сторону практических приложений привело к постановке целого ряда проблем, таких как новые архитектуры компьютеров для нечетких вычислений, элементная база нечетких компьютеров и контроллеров, инструментальные средства разработки, инженерные методы расчета и разработки нечетких систем управления и многое другое.

Математическая теория нечетких множеств позволяет описывать нечеткие понятия и знания, оперировать этими знаниями и делать нечеткие выводы.

Нечеткое управление оказывается особенно полезным, когда технологические процессы являются слишком сложными для анализа с помощью общепринятых количественных методов или когда доступные источники информации интерпретируются качественно, неточно или неопределенно. Нечеткая логика, на которой основано нечеткое управление, ближе по духу к человеческому мышлению и естественным языкам, чем традиционные логические системы. Нечеткая логика, в основном, обеспечивает эффективные средства отображения неопределенностей и неточностей реального мира. Наличие математических средств отражения нечеткости исходной информации позволяет построить модель, адекватную реальности.

Добавить комментарий


Защитный код
Обновить