Демонстрация онлайн обучения нейронной сети

Демонстрация онлайн обучения нейронной сети

Здесь вы сможете познакомиться с онлайн визуализацией работы простой искусственной нейронной сети. Вам доступны три типа демонстраций: решение проблемы XOR, построение функции приближения и распознавание образов. Вы можете изменить некоторые параметры выполнения и режимы скорости. Эта визуализация будет полезна студентам и поможет в понимании процесса обучения нейронных сетей.

Как это использовать?

Для начала следует выбрать из выпадающего списка интересующую вас демонстрацию. Затем следует указать режим окончания обучения. Есть два варианта — по точности (величина ошибки) и по количеству шагов обучения. Обучение начинается по нажатию на кнопку «тренировать». Для сброса всех данных (начать обучение сначала), нажмите кнопку «инициализация». Когда обучение будет закончено, можно провести переобучение — «перетренировать».

Подробные сведения о параметрах

Число узлов скрытых слоев

Вы можете изменить количество нейронов для каждого промежуточного слоя. Пожалуйста, введите значения, разделенные запятыми. Например, «2, 3» указывает, что 1-й слой содержит два нейрона, второй слой — 3. Вы можете увеличивать число слоев, добавляя через запятую число нейронов в новом слое.

Замечание. Если вы введете слишком много слоев и нейронов, то ваш браузер может зависнуть. Поэтому не увлекайтесь.

Скорость обучения

Если Вы изучаете нейронные сети, то вы знаете, что это за параметр. Он влияет и на точность получаемого результата, и на скорость обучения.

Условия остановки

Эти условия указывают, когда будет завершено обучение. Тут надо экспериментировать в зависимости от целей обучения. Если Вы зададите конкретное число шагов, то обучение гарантированно остановится после прохождения указанного числа циклов обучения. Указывая определенную точность, можно надолго запустить процесс обучения и даже не получить требуемой точности никогда для определенного сочетания параметров системы.

Скорость

Вы можете регулировать скорость визуализации от минимальной до максимальной. Минимальная подходит, если вам надо показать, как идет процесс обучения. Но, чтобы реально обучить систему и получать результат с заданной точностью, лучше устанавливать максимальную скорость.

Список доступных демонстраций

3 входа + логика XOR

Эта демонстрация показывает обучение сети для трех входящих сигналов в логику XOR (исключающее или). При нажатии на кнопку в таблице «Тест», вы сможете проверить выход. Сравнивайте выход до обучения и выход после обучения.

Аппроксимация функции

Эта демонстрация показывает обучение сети для получения аппроксимации функции. Пожалуйста, укажите вид функции для аппроксимации. Красная кривая представляет собой результат обучения.

Распознавание образов

Это моделирование распознавания символов. Здесь показано обучение нейронной сети для распознавания цифр от 0 до 9. Нажмите на панели интересующую вас цифру. Числовое значение можно получить по нажатию кнопки «распознать». Попробуйте распознать цифру без обучения и после обучения.

Замечание. Используйте демонстрацию на достаточно широком экране (больше 1310px). Для мобильных устройств визуализация может не работать.


искусственные нейронные сети
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • Четверть населения Финляндии, будет обучена работе с роботами и нейросетями.
  • Финляндии предстоит расти и расти, перед тем, как она сможет выйти на мировой рынок с технологиями искусственного интеллекта и все же, это не мешает
  • Как искусственный интеллект передает информацию от людей, потерявших способность говорить?
  • Несколько групп ученых смогли преобразовать команды головного мозга в речь с помощью компьютера-синтезатора. Для того, чтобы это сделать, они
  • К 2025 году, роботы строители, могут составить 10 процентов рабочей силы Японии.
  • Япония является одной из стран, в которой автоматизация процесса строительства, происходит очень медленно. Роботы на практике показывают лишь то, что
  • Интуитивный Алгоритм Технологической Сингулярности на основе Сильного Искусственного Интеллекта «Smart-MES»
  • Технологическая Сингулярность означает такое быстрое развитие прогресса, связанное с созданием сообщества Сильных Искусственных Интеллектов, когда
  • Видеокамеры научились различать телефоны в руках автомобилистов
  • Совсем недавно, в Москве, Сергей Собянин сделал официальное заявление, что с 2019 года в Москве заработают камеры, которые будут отслеживать опасных
Последние комментарии
Каким был первый робот в мире? Происхождение слова "Робот"
Восхищения нет предела делу ваших рук и идей. Хочется склонить голову перед вашим трудом, хотя твердо придерживаюсь Библии (не поклоняться идолам)
Как работает Любовь? Квантовая связь нейронной активности Людей
Я думаю, когда начнется квантовое взаимодействие мржду человеком и ИИ это и будет началом конца.
Как работает Любовь? Квантовая связь нейронной активности Людей
Как вы считаете, возможно ли образование квантовых взаимодействий между человеком и ИИ? 
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
А почему бы сразу СИИ не запустить в другую галактику, может там нет коррупции, воровства, плебейства и прочей муры, которая не только мешает
Искусственный Интеллект. Концепция развития и внедрения Искусственного Интеллекта (Искусственной Аналитики)
Согласен. проблема ИИ не в наборе задач. Главная проблема - познание процесса мышления как феномена физиологии головного мозга человека.
Мы в социальных сетях
Статистика
0  
Всего статей 1545
0  
Всего комментариев 75
0  
Пользователей 69