Тестирование алгоритмов многомерной оптимизации

Тестирование алгоритмов многомерной оптимизации

Для тестирования алгоритмов многомерной оптимизации, основанных как на методах эволюционного моделирования, так и на любых других следует использовать специальные тестовые функции. Ниже приведён перечень некоторых из них, указаны рекомендуемые интервалы изменения переменных и глобальные оптимальные значения.

Часть 10. Правила выбора особей

Часть 10. Правила выбора особей

Практически на всех этапах работы генетических алгоритмов приходится иметь дело с необходимостью выбора родительских особей для применения генетических операторов, дочерних особей для включения в новую популяцию, исключения особей из популяции.

Часть 9. Генетические алгоритмы вещественного кодирования

Часть 9. Генетические алгоритмы вещественного кодирования

Часть 9. Генетические алгоритмы вещественного кодирования

Алгоритмы вещественного кодирования работают, в общем случае, с непрерывной областью допустимых значений переменных. Данный класс алгоритмов позволяет уменьшить объём вычислительных процедур на каждом шаге эволюции за счёт отсутствия двоично-десятичных преобразований при расчёте значений функций приспособленности и уменьшения размеров хромосом.

Часть 8. Диплоидные генетические алгоритмы

Часть 8. Диплоидные генетические алгоритмы

Основной принцип работы диплоидных генетических алгоритмов заключается в возможности кодирования одних и тех же свойств особи (переменных) хромосомными наборами, полученными от обоих родителей. При этом проявляются свойства в дочерней особи в зависимости от отношений доминантности и рецессивности между гомологичными (находящимися в одинаковых позициях) генами родительских хромосом.

TetraMall — пришло ли время искусственному интеллекту перевернуть рынок?

TetraMall — пришло ли время искусственному интеллекту перевернуть рынок?

Не секрет, что каждый новый появляющийся стартап (а они сейчас, как известно, растут быстрее, чем грибы после дождя) первым делом стремится заявить о том, что именно он: перевернет наше представление об…/навсегда изменит рынок…/уничтожит конкурентов… и так далее.

Часть 7. Эволюционные стратегии

Часть 7. Эволюционные стратегии

Среди стратегий, использующихся в современных генетических алгоритмах, можно выделить стратегии элитизма, разнообразия, «свежей крови», изменения размера популяции, параллельных эволюций (миграции, турнирную).

Часть 6. Новые генетические операторы

Часть 6. Новые генетические операторы

К числу новых генетических операторов относятся сегрегация, транслокация, дупликация, делеция.

Часть 5. Модифицированные генетические операторы

Часть 5. Модифицированные генетические операторы

Современные генетические алгоритмы развивались, в том числе, в направлении совершенствования и модификации базовых генетических операторов. Рассмотрим эти модификации.

Часть 4. Классификация генетических операторов. Базовые генетические операторы

Часть 4. Классификация генетических операторов. Базовые генетические операторы

Развитие генетических алгоритмов привело к возникновению множества различных генетических операторов (см. рис.).

Часть 3. Масштабирование функции приспособленности

Часть 3. Масштабирование функции приспособленности

Одним из центральных понятий при эволюционном моделировании является функция приспособленности. При оптимизации с помощью генетического алгоритма в качестве функции приспособленности используется критерий оптимальности решаемой. Для расчёта приспособленности особи её необходимо перекодировать в вещественную форму.

Часть 2. Кодирование переменных. Код Грея

Часть 2. Кодирование переменных. Код Грея

Кодирование переменных. Код Грея

Непосредственно двоичный код, как правило, всё-таки не используется для бинарного представления хромосомы. Это связано с тем, что минимально отличающиеся в вещественном представлении переменные в большинстве случаев имеют большие различия (во многих позициях генов) при их двоичном представлении. Рассмотрим это на примере.

Часть 1. Кодирование переменных. Преобразование в двоичный код

Часть 1. Кодирование переменных. Преобразование в двоичный код

Генетические алгоритмы либо сами используются для решения задач оптимизации, либо сама задача, решаемая с помощью данного инструмента, сводится к оптимизационной. Причём оптимизация должна быть многомерной, иначе нет никакого смысла использовать такой сложный метод. Решение любой задачи оптимизации – это вектор значений оптимизируемых переменных, обеспечивающих наилучшую величину некоторого критерия.

Генетические алгоритмы. Терминология

Генетические алгоритмы. Терминология

Ниже представлена основная терминология в области генетических алгоритмов

Последние комментарии
Почему космос не имеет начала и конца: комментарии учёных
Земля находится трёх слонах, которые стоят на черепахе
Судьба ледокола «Арктика» остается неопределенной после повреждения одного из двигателей
Народ теперь что бы накачать мышцы и убрать лишний жир можно без спорта и диет, просто надел и забыл. Опробовал лично и результат удивил уже через
Сообщение о покупке водородной яхты Билом Гейтсом оказалось ложным
Народ теперь что бы накачать мышцы и убрать лишний жир можно без спорта и диет, просто надел и забыл. Опробовал лично и результат удивил уже через
Для чего динозавру абдараинуру такой необычный хвост
Народ теперь что бы накачать мышцы и убрать лишний жир можно без спорта и диет, просто надел и забыл. Опробовал лично и результат удивил уже через
Получены самые детальные снимки поверхности Солнца
Народ теперь что бы накачать мышцы и убрать лишний жир можно без спорта и диет, просто надел и забыл. Опробовал лично и результат удивил уже через
Мы в социальных сетях
Статистика
0  
Всего статей 2542
1  
Всего комментариев 943
0  
Пользователей 180