Нейронные сети с глубинным обучением

Нейронные сети с глубинным обучением

Грядущая революция умных роботов предсказывалась каждые десять лет начиная с 1950­х годов. Тем не менее, она так и не произошла. Прогресс в области искусственного интеллекта происходил неуверенно, порою скучно, неся многим энтузиастам разочарование. Видимые успехи – компьютер Deep Blue, созданный в середине 1990-х IBM и обыгравший в 1997 году Гарри Каспарова в шахматы, или появление в конце 1990-х электронного переводчика – были скорее результатом «грубых» расчетов, чем переносом механизмов человеческого восприятия на процессы компьютерных вычислений.

Однако история разочарований и провалов теперь резко меняется. Всего десять лет назад алгоритмы компьютерного зрения и распознавания предметов могли идентифицировать шар или параллелепипед на простом фоне. Теперь они могут различать человеческие лица так же хорошо, как это могут делать люди, даже на сложном, естественном фоне. Полгода назад Google выпустил приложение для смартфонов, способное переводить текст с более чем 20-ти иностранных языков, считывая слова с фотографий, дорожных знаков или рукописного текста!

Все это стало возможным после того, как выяснилось, что некоторые старые идеи в области нейронных сетей, если их незначительно видоизменить, добавив «жизни», т.е. спроецировав детали человеческого и животного восприятия, могут дать ошеломляющий результат, которого никто и не ожидал. В этот раз революция искусственного разума кажется действительно реальной.

Исследования нейронных сетей в области машинного обучения в большинстве случаев были всегда посвящены поиску новых методик распознавания различных типов данных. Так, компьютер, подключенный к камере, должен, используя алгоритм распознавания изображений, суметь различить на картинке плохого качества человеческое лицо, чашку чая или собаку. Исторически, однако, использование нейронных сетей для этих целей сопровождалось существенными трудностями. Даже незначительный успех требовал человеческого вмешательства – люди помогали программе определить важные особенности изображения, такие как границы изображения или простые геометрические фигуры. Существующие алгоритмы не могли сами научиться делать это.

Положение дел резко изменилось благодаря созданию так называемых нейронных сетей с глубинным обучением, которые теперь могут проанализировать изображение почти так же эффективно, как человек. Такие нейронные сети используют изображение плохого качества как входные данные для «нейронов» первого уровня, который затем передает «картинку» через нелинейные связи нейронам следующего уровня. После определенной тренировки, «нейроны» более высоких уровней могут применять для распознавания более абстрактные аспекты изображения. Например, они могут использовать такие детали, как границы изображения или особенности его расположения в пространстве. Поразительно, но такие сети способны научиться оценивать наиболее важные особенности изображения без помощи человека!

Замечательным примером использования нейронных сетей с глубинным обучением является распознавание одинаковых объектов, сфотографированных под разными углами или в разных позах (если речь идет о человеке или о животном). Алгоритмы, использующие попиксельное сканирование, «думают» что перед ними два разных изображения, тогда как «умные» нейронные сети «понимают», что перед ними тот же самый объект. И наоборот – изображения двух собак разных пород, сфотографированных в одинаковой позе, прежними алгоритмами могли восприниматься как фотографии одной и той же собаки. Нейронные сети с глубинным обучением могут выявить такие детали изображений, которые помогут им различить животных.

Совмещение методик глубинного обучения, передовых знаний нейронауки и мощностей современных компьютеров открывает для искусственного интеллекта перспективы, которые мы даже не в силах пока оценить. Правда уже очевидно, что разум может иметь не только биологическую природу.


искусственные нейронные сети искусственный интеллект программное обеспечение Глубинное обучение
Комментариев 1
  1. 123
    "некоторые старые идеи в области нейронных сетей, если их незначительно видоизменить, добавив «жизни», т.е. спроецировав детали человеческого и животного восприятия, могут дать ошеломляющий результат" бред написали
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • Искусственный интеллект смог визуализировать 2D изображения.
  • Ученые из Вашингтона разработали модель, которая способна воссоздавать движения человека на фотографиях и картинах. Она создает для него 3D модель и
  • Искусственный интеллект, робот Вера, получил 226 млн рублей
  • ФРИИ и Кировский завод вкладывают 226 миллионов рублей в представителя «Сколкова» — компанию «Стафори», создавшую робота-рекрутера. Искусственный
  • В Москве состоялся финал PicsArt AI Hackathon, с самым крупным призовым фондом в истории
  • 30 ноября-2 декабря, в Москве прошел крупнейший хакатон в сфере искусственного интеллекта и компьютерного зрения - PicsArt AI Days. На хакатон было
  • В следующем году в Москве, заработает видеоконтроль, способный обнаружить преступников
  • Как рассказал в своем сообщении Сергей Собянин, новая система будет способна анализировать записи с видеокамер. Быстрая обработка данных позволит
  • В Москве пройдет один из крупнейших хакатонов в мире в сфере искусственного интеллекта
  • PicsArt, ведущая творческая платформа для создания контента и визуализации историй в социальных сетях с более чем 100 миллионами активных
Последние комментарии
Как работает Любовь? Квантовая связь нейронной активности Людей
Как вы считаете, возможно ли образование квантовых взаимодействий между человеком и ИИ? 
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
А почему бы сразу СИИ не запустить в другую галактику, может там нет коррупции, воровства, плебейства и прочей муры, которая не только мешает
Искусственный Интеллект. Концепция развития и внедрения Искусственного Интеллекта (Искусственной Аналитики)
Согласен. проблема ИИ не в наборе задач. Главная проблема - познание процесса мышления как феномена физиологии головного мозга человека.
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Господа - непубликация моего вполне невинного предложения о пересборке Win-10  в удобопользуемый вид, со 146% вероятностью характеризует "ценность"
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Если Ваш SM столь замечателен-могуч-адаптивен, что вот-вот пристроит нам сингулярность, то нельзя-ли ему решить ничтожную, но практическую задачу -
Мы в социальных сетях
Статистика
1  
Всего статей 1538
3  
Всего комментариев 72
0  
Пользователей 63