Зависимости выходного значения нейрона от синаптических коэффициентов

Зависимости выходного значения нейрона от синаптических коэффициентов

Для начала вспомним что такое искусственные нейронные сети. ИНС - это математический аппарат, основанный на аналогиях с функционированием центральной нервной системы и предназначенный для решения широкого круга задач.

Искусственный нейрон это элементарная структурная единица искусственной нейронной сети, выполняющая функции по обработке входных сигналов поступающих с других нейронов и представлению результата в форме выходного значения.

Входные сигналы подвергаются в теле нейрона преобразованию, зачастую нелинейному с участием весовых коэффициентов Wi, характеризующих значимость каждой связи и функции активации. W0 - коэффициент смещения - вес фиктивного единичного входа.

Искусственные нейронные сети

Состояние нейрона S определяется как взвешенная с помощью синаптических коэффициентов сумма его входных значений:

S = W0 + sum(WiXi)

Функция активации преобразует состояние нейрона в значение в форме и масштабе выходного сигнала:

Y = F(S)

Сигмоидная логистическая функция:

F(S) = 1 / (exp(-a(S-T) + 1)

Параметр a влияет на степень нелинейности изменения переменной в нормализуемом виде.

В этой работе, хотелось бы изучить принципы работы искусственного нейрона, процесс обработки входных сигналов и влияние на выходной сигнал отдельных входных значений, синаптический коэффициентов и настроек активационной функции.

Так же было бы здорово разработать программно-алгоритмическое обеспечение, моделирующее работу искусственного нейрона и провести исследование взаимного влияния параметров и переменных искусственного нейрона.

Практическая часть. Моделирование работы искусственного нейрона

Средой разработки стала Qt. Qt - кросс платформенный инструментарий разработки ПО на языке программирования C++. Для вывода графиков использовалась сторонняя библиотека "qcustomplot".

Графическая зависимость выходного значения нейрона от каждой из входных переменных в отдельности показан на следующем графике:

Графическая зависимость выходного значения нейрона от каждой из входных переменных

Как видно с увеличением значения входного параметра выходное значение нейрона увеличивается, но не превышает 1. При увеличении начального значения а данная зависимость становится более нелинейной.

Графические зависимости выходного значения нейрона от каждого из синаптических коэффициентов, включая коэффициент смещения показан на следующем графике

Графические зависимости выходного значения нейрона от каждого из синаптических коэффициентов

Как видно по графику при изменение коэффициентов w1 и w2 выходное значение нейрона изменяется примерно одинаково и стремится к значение ~0.6. Большое влияние на выходное значение оказывает коэффициент смещения, при увеличении W0 выходное значение стремится к 1, т.к. W0 является весом фиктивного единичного входа, что и является причиной такого влияния.

Графические зависимости выхода нейрона от каждого из параметров активационной функции:

зависимость выходного значения нейрона от коэффициента a

зависимость выходного значения нейрона от коэффициента Т

На первом графике можно увидеть зависимость выходного значения нейрона от коэффициента a. На графике видно что при изменении параметра а изменяется степень нелинейности активационной функции.

На втором графике зависимость выходного значения нейрона от коэффициента Т. Данная зависимость представлена в виде убывающей пороговой функции.


искусственные нейронные сети
Комментариев 2
  1. celvins
    Хм, просто код писался очень давно и лежал в чертогах моего компьютера :DD Код не идеален, но он работает, выложил специально для вас в репозиторий: https://github.com/celvins/neuron_graph.git ) Скоро добавлю еще одну статью с реализованной нейросетью способной обучаться тоже на c++ там код уже более менее универсальный )
  2. yura497ono
    Что такое T, что такое W0?
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • Четверть населения Финляндии, будет обучена работе с роботами и нейросетями.
  • Финляндии предстоит расти и расти, перед тем, как она сможет выйти на мировой рынок с технологиями искусственного интеллекта и все же, это не мешает
  • Как искусственный интеллект передает информацию от людей, потерявших способность говорить?
  • Несколько групп ученых смогли преобразовать команды головного мозга в речь с помощью компьютера-синтезатора. Для того, чтобы это сделать, они
  • К 2025 году, роботы строители, могут составить 10 процентов рабочей силы Японии.
  • Япония является одной из стран, в которой автоматизация процесса строительства, происходит очень медленно. Роботы на практике показывают лишь то, что
  • Интуитивный Алгоритм Технологической Сингулярности на основе Сильного Искусственного Интеллекта «Smart-MES»
  • Технологическая Сингулярность означает такое быстрое развитие прогресса, связанное с созданием сообщества Сильных Искусственных Интеллектов, когда
  • Видеокамеры научились различать телефоны в руках автомобилистов
  • Совсем недавно, в Москве, Сергей Собянин сделал официальное заявление, что с 2019 года в Москве заработают камеры, которые будут отслеживать опасных
Последние комментарии
Каким был первый робот в мире? Происхождение слова "Робот"
Восхищения нет предела делу ваших рук и идей. Хочется склонить голову перед вашим трудом, хотя твердо придерживаюсь Библии (не поклоняться идолам)
Как работает Любовь? Квантовая связь нейронной активности Людей
Я думаю, когда начнется квантовое взаимодействие мржду человеком и ИИ это и будет началом конца.
Как работает Любовь? Квантовая связь нейронной активности Людей
Как вы считаете, возможно ли образование квантовых взаимодействий между человеком и ИИ? 
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
А почему бы сразу СИИ не запустить в другую галактику, может там нет коррупции, воровства, плебейства и прочей муры, которая не только мешает
Искусственный Интеллект. Концепция развития и внедрения Искусственного Интеллекта (Искусственной Аналитики)
Согласен. проблема ИИ не в наборе задач. Главная проблема - познание процесса мышления как феномена физиологии головного мозга человека.
Мы в социальных сетях
Статистика
0  
Всего статей 1545
0  
Всего комментариев 75
0  
Пользователей 69