Зависимости выходного значения нейрона от синаптических коэффициентов


Зависимости выходного значения нейрона от синаптических коэффициентов

Для начала вспомним что такое искусственные нейронные сети. ИНС - это математический аппарат, основанный на аналогиях с функционированием центральной нервной системы и предназначенный для решения широкого круга задач.

Искусственный нейрон это элементарная структурная единица искусственной нейронной сети, выполняющая функции по обработке входных сигналов поступающих с других нейронов и представлению результата в форме выходного значения.

Входные сигналы подвергаются в теле нейрона преобразованию, зачастую нелинейному с участием весовых коэффициентов Wi, характеризующих значимость каждой связи и функции активации. W0 - коэффициент смещения - вес фиктивного единичного входа.

Искусственные нейронные сети

Состояние нейрона S определяется как взвешенная с помощью синаптических коэффициентов сумма его входных значений:

S = W0 + sum(WiXi)

Функция активации преобразует состояние нейрона в значение в форме и масштабе выходного сигнала:

Y = F(S)

Сигмоидная логистическая функция:

F(S) = 1 / (exp(-a(S-T) + 1)

Параметр a влияет на степень нелинейности изменения переменной в нормализуемом виде.

В этой работе, хотелось бы изучить принципы работы искусственного нейрона, процесс обработки входных сигналов и влияние на выходной сигнал отдельных входных значений, синаптический коэффициентов и настроек активационной функции.

Так же было бы здорово разработать программно-алгоритмическое обеспечение, моделирующее работу искусственного нейрона и провести исследование взаимного влияния параметров и переменных искусственного нейрона.

Практическая часть. Моделирование работы искусственного нейрона

Средой разработки стала Qt. Qt - кросс платформенный инструментарий разработки ПО на языке программирования C++. Для вывода графиков использовалась сторонняя библиотека "qcustomplot".

Графическая зависимость выходного значения нейрона от каждой из входных переменных в отдельности показан на следующем графике:

Графическая зависимость выходного значения нейрона от каждой из входных переменных

Как видно с увеличением значения входного параметра выходное значение нейрона увеличивается, но не превышает 1. При увеличении начального значения а данная зависимость становится более нелинейной.

Графические зависимости выходного значения нейрона от каждого из синаптических коэффициентов, включая коэффициент смещения показан на следующем графике

Графические зависимости выходного значения нейрона от каждого из синаптических коэффициентов

Как видно по графику при изменение коэффициентов w1 и w2 выходное значение нейрона изменяется примерно одинаково и стремится к значение ~0.6. Большое влияние на выходное значение оказывает коэффициент смещения, при увеличении W0 выходное значение стремится к 1, т.к. W0 является весом фиктивного единичного входа, что и является причиной такого влияния.

Графические зависимости выхода нейрона от каждого из параметров активационной функции:

зависимость выходного значения нейрона от коэффициента a

зависимость выходного значения нейрона от коэффициента Т

На первом графике можно увидеть зависимость выходного значения нейрона от коэффициента a. На графике видно что при изменении параметра а изменяется степень нелинейности активационной функции.

На втором графике зависимость выходного значения нейрона от коэффициента Т. Данная зависимость представлена в виде убывающей пороговой функции.


искусственные нейронные сети
Комментариев 2
  1. celvins
    Хм, просто код писался очень давно и лежал в чертогах моего компьютера :DD Код не идеален, но он работает, выложил специально для вас в репозиторий: https://github.com/celvins/neuron_graph.git ) Скоро добавлю еще одну статью с реализованной нейросетью способной обучаться тоже на c++ там код уже более менее универсальный )
  2. yura497ono
    Что такое T, что такое W0?
Гость, оставишь комментарий?
Имя:*
E-Mail:


Свежее новое
  • Как искусственный интеллект помогает в изучении иностранного языка ?
  • Технологии стали неотъемлемой частью нашей жизни. Они развиваются так быстро, что люди не успевают за ними. Мы не можем отрицать его силу или
  • Mail.Ru Group запустили чемпионат по искусственному интеллекту Mini AI Cup #3!
  • На конец лета выпало событие, которое наверняка заинтересует многих любителей поразмышлять о будущем разумных машин. Неделю назад, 30 августа,
  • Искусственный интеллект против команды профессиональных геймеров в DOTA 2. Кто победит?
  • Искусственный интеллект уже подтвердил, что может легко расправится со своими соперниками людьми, играя с ними в шахматы, Го или покер. Как он
  • Обработку разведданных с дронов США поручат искусственному интеллекту
  • Как известно, большинство частных компаний избегают использовать свой потенциал при разработке систем искусственного интеллекта для оборонных целей.
Последние комментарии
Теория и Практика Технологической Сингулярности и Искусственного Интеллекта
На сегодня развитие IT в США значительно опережает состояние в России, где нет своего компьютера, нет своей операционной системы, нет своей
Как работает Любовь? Квантовая связь нейронной активности Людей
про квантовые коммуникации прочитал - интересно. Спасибо. Про любовь - не увидел. Жалко.
Топ 10 компаний, занимающихся разработкой искусственного интеллекта
Спасибо, перечень интересный, но знакомый. Единая проблема всех ИИ-разработчиков - не понимание того, что сознание - это не статистика, а пойти по
Теория и Практика Технологической Сингулярности и Искусственного Интеллекта
Технологическая сингулярность по мнению Вернора Винджа будет развиваться следующим образом: 1. Компьютеры обретут сознание, и возникнет мощный ИИ; 2.
Теория и Практика Технологической Сингулярности и Искусственного Интеллекта
Может ли технологическая сингулярность, т.е. взрывное ускорение научно-технического прогресса, появиться только в России или необходимо, чтобы она
Мы в социальных сетях
Статистика
0  
Всего статей 1511
1  
Всего комментариев 49
1  
Пользователей 48