Нейросетевые модели. Классификация

В качестве классифицирующих признаков нейросетевых моделей рассматриваются размерность пространства среды, состав выходных переменных, система отсчета, временная глубина, форма ячеек, порядок их расположения, количество уровней и наполненность последнего уровня. Схема классификации приведена на рисунке ниже.

Рассмотрим особенности различных классов ячеечно-нейросетевых моделей.

Трёхмерные модели применяются при необходимости моделирования изменения состояния среды в пространстве трёх координат. Это чаще всего мелкомасштабные модели с высокой ячеечной плотностью, характерные для описания процессов, протекающих в объёмном технологическом оборудовании.

Плоскостные модели используются, если поставленная задача удовлетворяет условию достаточности моделирования изменения состояния среды в двухмерном пространстве.

Классификация ячеечно-нейросетевых моделей

Классификация ячеечно-нейросетевых моделей

Модели с единственным выходом представляют собой нейросетевой аналог алгебраической функциональной зависимости от нескольких аргументов. Используются, если необходимо рассчитать состояние только одной ячейки.

Модели с несколькими выходами – это сложные многосвязные зависимости, для которых характерно влияние всего множества входных переменных на множество выходных. Кроме того, возможно присутствие скрытого влияния выходных переменных друг на друга. К данному виду можно отнести модели, в состав выходных переменных которых входит серия состояний одной ячейки, рассчитанных для различных моментов времени, либо множество состояний различных ячеек, рассчитанных для одного момента времени.

Пространственные модели позволяют получить неизвестные состояния определённой ячейки при помощи экстраполяции по известным состояниям соседних ячеек в тот же самый момент времени.

Временные модели позволяют проследить изменение состояний ячеек пространства во времени. Здесь кроме условий внешней среды в качестве входных переменных используются переменные состояний центральной ячейки и ячеек её окружения в последний известный момент времени (для одномоментных моделей), а также в два или более моментов (для двухмоментных и многомоментных моделей). Выходная переменная – это состояние центральной ячейки в следующий момент времени. Кроме того, для многосвязных моделей выходами будут также состояния ячеек её окружения. В последнем случае одна обученная нейронная сеть позволяет оценить состояние на единственно возможный интервал времени вперед. Однако, подавая на вход той же сети полученные результаты вычислений, можно получить серию значений.

Особенности моделей с различной формой и порядком расположения ячеек определяются степенью взаимного влияния ячеек, что, в свою очередь, связано с уровнями и рангами ячеек.

Если на вход нейронной сети помимо условий внешней среды подаётся состояние только базовой ячейки, такая модель называется одноуровневой. Если, дополнительно, – первого или обоих рангов 1-го уровня – двухуровневой. В случае подачи на вход состояний группы ячеек хотя бы одного ранга 2-го или последующих уровней – многоуровневой. Наиболее часто используются двухуровневые ячеечно-нейросетевые модели как обеспечивающие достаточную точность вычислений при относительно простом составе входных переменных нейронной сети.

При необходимости усложнения состава входов нейронной сети последовательно добавляются состояния ячеек следующих рангов последнего задействованного уровня и только по исчерпании всех рангов берут новый уровень ячеек. Таким образом, в составе входных переменных нейронной сети не могут быть использованы состояния ячеек, расположенные дальше от центра (а значит в меньшей степени влияющие на состояние базовой ячейки), чем еще не задействованные, но ближе лежащие.

Если в составе входных переменных использованы состояния ячеек всех рангов последнего входящего в него уровня, такая модель называется полноуровневой. В противном случае модель – неполноуровневая.

По материалам статьи:
Дударов С. П., Папаев П. Л., Кудряшов А. Н., Карибова Ю. А. Ячеечно-нейросетевые модели в задачах экологической безопасности. – Искусственный интеллект и принятие решений, 2011, № 2. – с. 31–39.


Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • В Москве пройдет один из крупнейших хакатонов в мире в сфере искусственного интеллекта
  • PicsArt, ведущая творческая платформа для создания контента и визуализации историй в социальных сетях с более чем 100 миллионами активных
  • Сильный Искусственный Интеллект «Smart-MES» меняет взгляды на Технологическую Сингулярность
  • Учёные полагают, что Технологическая Сингулярность наступит тогда, когда Сильный Искусственный Интеллект будет способен самостоятельно создавать себе
  • Навыки голосовых помощников от Amazon, Google, Microsoft и Яндекс
  • После лекции директора по маркетингу умного помощника Алисы, Даниилы Колесникова, меня посетило вдохновение и любопытство. Так как мы сами сейчас
  • Конкурс идей от лаборатории Касперского - Kaspersky Start Russia
  • Если ты инициативный лидер, у тебя есть знания в области IT и тебе хотелось бы возглавить собственный проект в лаборатории Касперского, то подай
  • Смарт-города, умный транспорт и инновации для ЖКХ: что обсуждали на конференции «Интернет вещей»
  • Интернет вещей для промышленности, транспорта, ЖКХ и торговли: в Москве обсудили развитие и внедрение технологии. Конференция «Интернет вещей»,
Последние комментарии
5 лучших приложений искусственного интеллекта для вашего телефона Android
какой это искусственный разум мне смешно не пудрите людям мозги ,голосовой поисковик- это интелект ха ха ну вы тут и загибаете фантастику
5 лучших приложений искусственного интеллекта для вашего телефона Android
Всё вышеперечисленное назвать интеллектом можно с большущей натяжкой. Так, программки-автоматы с почти хорошим распознаванием несложной речи.
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
У нас очень странный народ, если что не понимает, то обязательно надо сунуть в морду. Зачем? А не лучше ли поинтересоваться, почему именно так? У
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Господин Чернов. Поясню. Любой инструмент, даже прозаическая кофемолка, проходят процедуру стендовых испытаний. Сертификат соответствия
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
     " И странная картина получается в коридорах власти ". Странная картина  получается, если полагать, что власть эта поставлена для решения задач
Мы в социальных сетях
Статистика
0  
Всего статей 1533
0  
Всего комментариев 65
0  
Пользователей 56