Нейросетевые модели. Классификация


В качестве классифицирующих признаков нейросетевых моделей рассматриваются размерность пространства среды, состав выходных переменных, система отсчета, временная глубина, форма ячеек, порядок их расположения, количество уровней и наполненность последнего уровня. Схема классификации приведена на рисунке ниже.

Рассмотрим особенности различных классов ячеечно-нейросетевых моделей.

Трёхмерные модели применяются при необходимости моделирования изменения состояния среды в пространстве трёх координат. Это чаще всего мелкомасштабные модели с высокой ячеечной плотностью, характерные для описания процессов, протекающих в объёмном технологическом оборудовании.

Плоскостные модели используются, если поставленная задача удовлетворяет условию достаточности моделирования изменения состояния среды в двухмерном пространстве.

Классификация ячеечно-нейросетевых моделей

Классификация ячеечно-нейросетевых моделей

Модели с единственным выходом представляют собой нейросетевой аналог алгебраической функциональной зависимости от нескольких аргументов. Используются, если необходимо рассчитать состояние только одной ячейки.

Модели с несколькими выходами – это сложные многосвязные зависимости, для которых характерно влияние всего множества входных переменных на множество выходных. Кроме того, возможно присутствие скрытого влияния выходных переменных друг на друга. К данному виду можно отнести модели, в состав выходных переменных которых входит серия состояний одной ячейки, рассчитанных для различных моментов времени, либо множество состояний различных ячеек, рассчитанных для одного момента времени.

Пространственные модели позволяют получить неизвестные состояния определённой ячейки при помощи экстраполяции по известным состояниям соседних ячеек в тот же самый момент времени.

Временные модели позволяют проследить изменение состояний ячеек пространства во времени. Здесь кроме условий внешней среды в качестве входных переменных используются переменные состояний центральной ячейки и ячеек её окружения в последний известный момент времени (для одномоментных моделей), а также в два или более моментов (для двухмоментных и многомоментных моделей). Выходная переменная – это состояние центральной ячейки в следующий момент времени. Кроме того, для многосвязных моделей выходами будут также состояния ячеек её окружения. В последнем случае одна обученная нейронная сеть позволяет оценить состояние на единственно возможный интервал времени вперед. Однако, подавая на вход той же сети полученные результаты вычислений, можно получить серию значений.

Особенности моделей с различной формой и порядком расположения ячеек определяются степенью взаимного влияния ячеек, что, в свою очередь, связано с уровнями и рангами ячеек.

Если на вход нейронной сети помимо условий внешней среды подаётся состояние только базовой ячейки, такая модель называется одноуровневой. Если, дополнительно, – первого или обоих рангов 1-го уровня – двухуровневой. В случае подачи на вход состояний группы ячеек хотя бы одного ранга 2-го или последующих уровней – многоуровневой. Наиболее часто используются двухуровневые ячеечно-нейросетевые модели как обеспечивающие достаточную точность вычислений при относительно простом составе входных переменных нейронной сети.

При необходимости усложнения состава входов нейронной сети последовательно добавляются состояния ячеек следующих рангов последнего задействованного уровня и только по исчерпании всех рангов берут новый уровень ячеек. Таким образом, в составе входных переменных нейронной сети не могут быть использованы состояния ячеек, расположенные дальше от центра (а значит в меньшей степени влияющие на состояние базовой ячейки), чем еще не задействованные, но ближе лежащие.

Если в составе входных переменных использованы состояния ячеек всех рангов последнего входящего в него уровня, такая модель называется полноуровневой. В противном случае модель – неполноуровневая.

По материалам статьи:
Дударов С. П., Папаев П. Л., Кудряшов А. Н., Карибова Ю. А. Ячеечно-нейросетевые модели в задачах экологической безопасности. – Искусственный интеллект и принятие решений, 2011, № 2. – с. 31–39.


Гость, оставишь комментарий?
Имя:*
E-Mail:


Свежее новое
  • Современные Парадоксы Технологической Сингулярности и Искусственного Интеллекта
  • Технологическая Сингулярность – это когда абсолютно всем очень хорошо, когда нет разделения на бедных и богатых, т.к. всей экономикой России ведает
  • Как искусственный интеллект помогает в изучении иностранного языка ?
  • Технологии стали неотъемлемой частью нашей жизни. Они развиваются так быстро, что люди не успевают за ними. Мы не можем отрицать его силу или
  • Mail.Ru Group запустили чемпионат по искусственному интеллекту Mini AI Cup #3!
  • На конец лета выпало событие, которое наверняка заинтересует многих любителей поразмышлять о будущем разумных машин. Неделю назад, 30 августа,
  • Искусственный интеллект против команды профессиональных геймеров в DOTA 2. Кто победит?
  • Искусственный интеллект уже подтвердил, что может легко расправится со своими соперниками людьми, играя с ними в шахматы, Го или покер. Как он
Последние комментарии
Японские ученые создали робота, обыгрывающего человека в игру «камень-ножницы-бумага» в 100% случаев
И что с того что появится ..вернется в детские сады, школы, спортивные площадки и дворы .. раз нельзя никак выйграть. уж лучше с другим человеком
Теория и Практика Технологической Сингулярности и Искусственного Интеллекта
На сегодня развитие IT в США значительно опережает состояние в России, где нет своего компьютера, нет своей операционной системы, нет своей
Как работает Любовь? Квантовая связь нейронной активности Людей
про квантовые коммуникации прочитал - интересно. Спасибо. Про любовь - не увидел. Жалко.
Топ 10 компаний, занимающихся разработкой искусственного интеллекта
Спасибо, перечень интересный, но знакомый. Единая проблема всех ИИ-разработчиков - не понимание того, что сознание - это не статистика, а пойти по
Теория и Практика Технологической Сингулярности и Искусственного Интеллекта
Технологическая сингулярность по мнению Вернора Винджа будет развиваться следующим образом: 1. Компьютеры обретут сознание, и возникнет мощный ИИ; 2.
Мы в социальных сетях
Статистика
0  
Всего статей 1512
0  
Всего комментариев 49
1  
Пользователей 49