Искусственный нейрон. Структура искусственного нейрона

Схема искусственного нейрона

Искусственный нейрон является структурной единицей искусственной нейронной сети и представляет собой аналог биологического нейрона.

Структура искусственного нейрона

Искусственный нейрон является структурной единицей искусственной нейронной сети и представляет собой аналог биологического нейрона.

С математической точки зрения искусственный нейрон — это сумматор всех входящих сигналов, применяющий к полученной взвешенной сумме некоторую простую, в общем случае, нелинейную функцию, непрерывную на всей области определения. Обычно, данная функция монотонно возрастает. Полученный результат посылается на единственный выход.

Искусственные нейроны (в дальнейшем нейроны) объединяются между собой определенным образом, образуя искусственную нейронную сеть. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал поступает на синапсы следующих нейронов.

Каждый синапс характеризуется величиной синаптической связи или ее весом wi, который является эквивалентом электрической проводимости биологических нейронов.

Текущее состояние нейрона определяется, как взвешенная сумма его входов:

(1) Искусственный нейрон. Структура искусственного нейрона,

где w0 — коэффициент смещения нейрона (вес единичного входа)

Выход нейрона есть функция его состояния:

y = f(s)

Нелинейная функция f называется активационной и может иметь различный вид, как показано на рисунке ниже. Одной из наиболее распространенных является нелинейная функция с насыщением, так называемая логистическая функция или сигмоид (т.е. функция S-образного вида):

(2) Искусственный нейрон. Структура искусственного нейрона,

При уменьшении α сигмоид становится более пологим, в пределе при α=0 вырождаясь в горизонтальную линию на уровне 0.5, при увеличении α сигмоид приближается по внешнему виду к функции единичного скачка с порогом T в точке x=0. Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне [0,1]. Следует отметить, что сигмоидная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Функции активации искусственного нейрона

а) функция единичного скачка; б) линейный порог (гистерезис);
в) сигмоид — гиперболический тангенс; г) сигмоид — формула

Нейронным сетям присущ принцип параллельной обработки сигналов, который достигается путем объединения большого числа нейронов в так называемые слои и соединения определенным образом нейронов различных слоев, а также, в некоторых конфигурациях, и нейронов одного слоя между собой, причем обработка взаимодействия всех нейронов ведется послойно.

Как известно, существует огромное множество парадигм нейронных сетей. Все зависит от исследуемой задачи, для решения которой применяется аппарат ИНС.

Задача прогнозирования успешно решается при помощи многослойных персептронов, которые в свою очередь являются универсальными аппроксиматорами. Многослойная нейронная сеть с сигмоидными передаточными функциями является наиболее общей, универсальной сетевой архитектурой.

Имеются различные структуры многослойных сетей: с последовательными, перекрестными и обратными связями, с фиксированной переменной структурой (см. классификацию искусственных нейронных сетей).


искусственные нейронные сети искусственный нейрон
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • В Москве пройдет один из крупнейших хакатонов в мире в сфере искусственного интеллекта
  • PicsArt, ведущая творческая платформа для создания контента и визуализации историй в социальных сетях с более чем 100 миллионами активных
  • Сильный Искусственный Интеллект «Smart-MES» меняет взгляды на Технологическую Сингулярность
  • Учёные полагают, что Технологическая Сингулярность наступит тогда, когда Сильный Искусственный Интеллект будет способен самостоятельно создавать себе
  • Навыки голосовых помощников от Amazon, Google, Microsoft и Яндекс
  • После лекции директора по маркетингу умного помощника Алисы, Даниилы Колесникова, меня посетило вдохновение и любопытство. Так как мы сами сейчас
  • Конкурс идей от лаборатории Касперского - Kaspersky Start Russia
  • Если ты инициативный лидер, у тебя есть знания в области IT и тебе хотелось бы возглавить собственный проект в лаборатории Касперского, то подай
  • Смарт-города, умный транспорт и инновации для ЖКХ: что обсуждали на конференции «Интернет вещей»
  • Интернет вещей для промышленности, транспорта, ЖКХ и торговли: в Москве обсудили развитие и внедрение технологии. Конференция «Интернет вещей»,
Последние комментарии
5 лучших приложений искусственного интеллекта для вашего телефона Android
какой это искусственный разум мне смешно не пудрите людям мозги ,голосовой поисковик- это интелект ха ха ну вы тут и загибаете фантастику
5 лучших приложений искусственного интеллекта для вашего телефона Android
Всё вышеперечисленное назвать интеллектом можно с большущей натяжкой. Так, программки-автоматы с почти хорошим распознаванием несложной речи.
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
У нас очень странный народ, если что не понимает, то обязательно надо сунуть в морду. Зачем? А не лучше ли поинтересоваться, почему именно так? У
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Господин Чернов. Поясню. Любой инструмент, даже прозаическая кофемолка, проходят процедуру стендовых испытаний. Сертификат соответствия
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
     " И странная картина получается в коридорах власти ". Странная картина  получается, если полагать, что власть эта поставлена для решения задач
Мы в социальных сетях
Статистика
0  
Всего статей 1533
1  
Всего комментариев 65
0  
Пользователей 56