Обучение нейронной сети

Обучение нейронной сети- это процесс, в котором параметры нейронной сети настраиваются посредством моделирования среды, в которую эта сеть встроена. Тип обучения определяется способом подстройки параметров. Различают алгоритмы обучения с учителем и без учителя.
Процесс обучения с учителем представляет собой предъявление сети выборки обучающих примеров. Каждый образец подается на входы сети, затем проходит обработку внутри структуры НС, вычисляется выходной сигнал сети, который сравнивается с соответствующим значением целевого вектора, представляющего собой требуемый выход сети. 

Для того, чтобы нейронная сети была способна выполнить поставленную задачу, ее необходимо обучить (см. рис. 1). Различают алгоритмы обучения с учителем и без учителя.


 Процесс обучения с учителем представляет собой предъявление сети выборки обучающих примеров. Каждый образец подается на входы сети, затем проходит обработку внутри структуры НС, вычисляется выходной сигнал сети, который сравнивается с соответствующим значением целевого вектора, представляющего собой требуемый выход сети. Затем по определенному правилу вычисляется ошибка, и происходит изменение весовых коэффициентов связей внутри сети в зависимости от выбранного алгоритма. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.

Процесс обучения нейронной сети

Рис. 1. Иллюстрация процесса обучения НС

При обучении без учителя обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.
Для обучения нейронных сетей без учителя применяются сигнальные метод обучения Хебба и Ойа.

Математически процесс обучения  можно описать следующим  образом. В процессе функционирования нейронная сеть формирует выходной сигнал Y, реализуя некоторую функцию Y = G(X). Если архитектура сети задана, то вид функции G определяется значениями синаптических весов и смещенной сети.

Пусть решением некоторой задачи является функция Y = F(X), заданная параметрами входных-выходных данных (X1, Y1), (X2, Y2), …, (XN, YN), для которых Yk = F(Xk) (k = 1, 2, …, N).

Обучение состоит в поиске (синтезе) функции G, близкой к F в смысле некторой функции ошибки E. (см. рис. 1.8).

Если выбрано множество обучающих примеров – пар (XN, YN) (где k = 1, 2, …, N) и способ вычисления функции ошибки E, то обучение нейронной сети превращается в задачу многомерной оптимизации, имеющую очень большую размерность, при этом, поскольку функция E может иметь произвольный вид обучение в общем случае – многоэкстремальная невыпуклая задача оптимизации.

Для решения этой задачи могут использоваться следующие (итерационные) алгоритмы:

  1. алгоритмы локальной оптимизации с вычислением частных производных первого порядка:

  • градиентный алгоритм (метод наискорейшего спуска),

  • методы с одномерной и двумерной оптимизацией целевой функции в направлении антиградиента,

  • метод сопряженных градиентов,

  • методы, учитывающие направление антиградиента на нескольких шагах алгоритма;

  1. алгоритмы локальной оптимизации с вычислением частных производных первого и второго порядка:

  • метод Ньютона,

  • методы оптимизации с разреженными матрицами Гессе,

  • квазиньютоновские методы,

  • метод Гаусса-Ньютона,

  • метод Левенберга-Марквардта и др.;

  1. стохастические алгоритмы оптимизации:

  • поиск в случайном направлении,

  • имитация отжига,

  • метод Монте-Карло (численный метод статистических испытаний);

  1. алгоритмы глобальной оптимизации (задачи глобальной оптимизации решаются с помощью перебора значений переменных, от которых зависит целевая функция).

Похожие материалы по теме


искусственные нейронные сети обучение нейронной сети
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • Четверть населения Финляндии, будет обучена работе с роботами и нейросетями.
  • Финляндии предстоит расти и расти, перед тем, как она сможет выйти на мировой рынок с технологиями искусственного интеллекта и все же, это не мешает
  • Как искусственный интеллект передает информацию от людей, потерявших способность говорить?
  • Несколько групп ученых смогли преобразовать команды головного мозга в речь с помощью компьютера-синтезатора. Для того, чтобы это сделать, они
  • К 2025 году, роботы строители, могут составить 10 процентов рабочей силы Японии.
  • Япония является одной из стран, в которой автоматизация процесса строительства, происходит очень медленно. Роботы на практике показывают лишь то, что
  • Интуитивный Алгоритм Технологической Сингулярности на основе Сильного Искусственного Интеллекта «Smart-MES»
  • Технологическая Сингулярность означает такое быстрое развитие прогресса, связанное с созданием сообщества Сильных Искусственных Интеллектов, когда
  • Видеокамеры научились различать телефоны в руках автомобилистов
  • Совсем недавно, в Москве, Сергей Собянин сделал официальное заявление, что с 2019 года в Москве заработают камеры, которые будут отслеживать опасных
Последние комментарии
Каким был первый робот в мире? Происхождение слова "Робот"
Восхищения нет предела делу ваших рук и идей. Хочется склонить голову перед вашим трудом, хотя твердо придерживаюсь Библии (не поклоняться идолам)
Как работает Любовь? Квантовая связь нейронной активности Людей
Я думаю, когда начнется квантовое взаимодействие мржду человеком и ИИ это и будет началом конца.
Как работает Любовь? Квантовая связь нейронной активности Людей
Как вы считаете, возможно ли образование квантовых взаимодействий между человеком и ИИ? 
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
А почему бы сразу СИИ не запустить в другую галактику, может там нет коррупции, воровства, плебейства и прочей муры, которая не только мешает
Искусственный Интеллект. Концепция развития и внедрения Искусственного Интеллекта (Искусственной Аналитики)
Согласен. проблема ИИ не в наборе задач. Главная проблема - познание процесса мышления как феномена физиологии головного мозга человека.
Мы в социальных сетях
Статистика
0  
Всего статей 1545
1  
Всего комментариев 76
0  
Пользователей 69