Основные недостатки использования искусственных нейронных сетей и пути их решения

Несмотря на широкий спектр возможностей ИНС, решению задач с их помощью сопутствует ряд недостатков:

-       большинство подходов для проектирования ИНС являются эвристическими и часто не приводят к однозначным решениям;

-       для построения модели объекта на основе ИНС требуется выполнение многоцикловой настройки внутренних элементов и связей между ними;

-       проблемы, возникающие при подготовке обучающей выборки, связанные с трудностями нахождения достаточного количества обучающих примеров;

-       обучение сети в ряде случаев приводит к тупиковым ситуациям;

-       продолжительные временные затраты на выполнение процедуры обучения зачастую не позволяют применять ИНС в системах реального времени;

-       поведение обученной ИНС не всегда может быть однозначно предсказуемо, что увеличивает риск применения ИНС для управления дорогостоящими техническими объектами;

-      большинство известных коммерческих продуктов схемотехнической реализации нейронных сетей, выполняются в виде сверхбольших интегральных схем (СБИС), которые сегодня трудно назвать широкодоступными и др.

         Поиск оптимального соотношения параметров нейросетевых моделей и их характеристик в каждом конкретном случае является одной из ключевых задач, для эффективного решения которой необходим широкий спектр методов, алгоритмов и программ синтеза, различающихся по объему вычислений, качеству получаемых результатов, времени поиска решения, способам представления данных.

         Эти обстоятельства позволяют отметить актуальность разработки новых алгоритмов для подбора обучающих примеров, ориентированных на минимизацию аппаратурных затрат при последующей реализации ИНС.

         Учитывая, перечисленные выше недостатки, можно сделать заключение о том, что выбор типа нейронной сети и создания нейросетевой модели для какой-либо задачи является трудоемким процессом и порой может не принести удовлетворительных результатов. В качестве решения подобной весьма распространенной проблемы предлагается разработка алгоритмов, инструментальных программных средств и методики для автоматического получения формального описания аппроксимирующих нейронных сетей.

         Для достижения поставленной цели в работе решаются следующие задачи:

1.     Разработка аппарата аналитического описания аппроксимирующих ИНС, где количество нейронов является минимизированным для наперед заданной величины погрешности.

2.     Разработка методики определения параметров (методики обучения) ИНС указанного класса.

3.     Разработка алгоритма формирования обучающей выборки для аппроксимирующих ИНС и соответствующего математического обоснования.

4.     Подготовка инструментальной программной системы для синтеза формального описания нейросетевых моделей указанного класса.

5.     Осуществление анализа возможности создания и использования спецвычислителей (нейросетевых аппроксиматоров) на базе устройств с программируемой логикой.

         Практическая ценность данной работы состоит в том, что разработанная методика синтеза ИНС позволяет в автоматическом режиме получать формальное описание нейросетевых моделей, где количество нейронов является минимизированным для наперед заданной величины погрешности.

         Алгоритмы, разработанные для анализа моделируемых объектов, позволяют проводить оперативный контроль их нелинейностей непосредственно по ходу исследования.

         На основе формального описания нейросетевых моделей предоставляется возможность выбора одного из проанализированных вариантов их реализации в аппаратном или программном виде.

         Данная работа представляет интерес для решения задач синтеза и программной/аппаратной реализации аппроксимирующих ИНС. Особый интерес представляет использование алгоритма целенаправленного формирования обучающей выборки для последующего создания нейросетевой модели. В частности, характерным примером эффективного использования практически всех полученных в диссертационной работе результатов является применение разработанной нейросетевой модели для определения оптимального давления кислорода в бароаппарате при проведения сеансов гипербарической оксигенации у больных с огнестрельными ранениями.


искусственные нейронные сети
Гость, оставишь комментарий?
Имя:*
E-Mail:


 
Свежее новое
  • Искусственный интеллект смог визуализировать 2D изображения.
  • Ученые из Вашингтона разработали модель, которая способна воссоздавать движения человека на фотографиях и картинах. Она создает для него 3D модель и
  • Искусственный интеллект, робот Вера, получил 226 млн рублей
  • ФРИИ и Кировский завод вкладывают 226 миллионов рублей в представителя «Сколкова» — компанию «Стафори», создавшую робота-рекрутера. Искусственный
  • В Москве состоялся финал PicsArt AI Hackathon, с самым крупным призовым фондом в истории
  • 30 ноября-2 декабря, в Москве прошел крупнейший хакатон в сфере искусственного интеллекта и компьютерного зрения - PicsArt AI Days. На хакатон было
  • В следующем году в Москве, заработает видеоконтроль, способный обнаружить преступников
  • Как рассказал в своем сообщении Сергей Собянин, новая система будет способна анализировать записи с видеокамер. Быстрая обработка данных позволит
  • В Москве пройдет один из крупнейших хакатонов в мире в сфере искусственного интеллекта
  • PicsArt, ведущая творческая платформа для создания контента и визуализации историй в социальных сетях с более чем 100 миллионами активных
Последние комментарии
Как работает Любовь? Квантовая связь нейронной активности Людей
Как вы считаете, возможно ли образование квантовых взаимодействий между человеком и ИИ? 
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
А почему бы сразу СИИ не запустить в другую галактику, может там нет коррупции, воровства, плебейства и прочей муры, которая не только мешает
Искусственный Интеллект. Концепция развития и внедрения Искусственного Интеллекта (Искусственной Аналитики)
Согласен. проблема ИИ не в наборе задач. Главная проблема - познание процесса мышления как феномена физиологии головного мозга человека.
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Господа - непубликация моего вполне невинного предложения о пересборке Win-10  в удобопользуемый вид, со 146% вероятностью характеризует "ценность"
Сильный Искусственный Интеллект «Smart-MES» как основа Технологической Сингулярности России
Если Ваш SM столь замечателен-могуч-адаптивен, что вот-вот пристроит нам сингулярность, то нельзя-ли ему решить ничтожную, но практическую задачу -
Мы в социальных сетях
Статистика
0  
Всего статей 1538
1  
Всего комментариев 74
0  
Пользователей 64