Нейросетевые модели. Классификация

В качестве классифицирующих признаков нейросетевых моделей рассматриваются размерность пространства среды, состав выходных переменных, система отсчета, временная глубина, форма ячеек, порядок их расположения, количество уровней и наполненность последнего уровня. Схема классификации приведена на рисунке ниже.

Рассмотрим особенности различных классов ячеечно-нейросетевых моделей.

Трёхмерные модели применяются при необходимости моделирования изменения состояния среды в пространстве трёх координат. Это чаще всего мелкомасштабные модели с высокой ячеечной плотностью, характерные для описания процессов, протекающих в объёмном технологическом оборудовании.

Плоскостные модели используются, если поставленная задача удовлетворяет условию достаточности моделирования изменения состояния среды в двухмерном пространстве.

Классификация ячеечно-нейросетевых моделей

Классификация ячеечно-нейросетевых моделей

Модели с единственным выходом представляют собой нейросетевой аналог алгебраической функциональной зависимости от нескольких аргументов. Используются, если необходимо рассчитать состояние только одной ячейки.

Модели с несколькими выходами – это сложные многосвязные зависимости, для которых характерно влияние всего множества входных переменных на множество выходных. Кроме того, возможно присутствие скрытого влияния выходных переменных друг на друга. К данному виду можно отнести модели, в состав выходных переменных которых входит серия состояний одной ячейки, рассчитанных для различных моментов времени, либо множество состояний различных ячеек, рассчитанных для одного момента времени.

Пространственные модели позволяют получить неизвестные состояния определённой ячейки при помощи экстраполяции по известным состояниям соседних ячеек в тот же самый момент времени.

Временные модели позволяют проследить изменение состояний ячеек пространства во времени. Здесь кроме условий внешней среды в качестве входных переменных используются переменные состояний центральной ячейки и ячеек её окружения в последний известный момент времени (для одномоментных моделей), а также в два или более моментов (для двухмоментных и многомоментных моделей). Выходная переменная – это состояние центральной ячейки в следующий момент времени. Кроме того, для многосвязных моделей выходами будут также состояния ячеек её окружения. В последнем случае одна обученная нейронная сеть позволяет оценить состояние на единственно возможный интервал времени вперед. Однако, подавая на вход той же сети полученные результаты вычислений, можно получить серию значений.

Особенности моделей с различной формой и порядком расположения ячеек определяются степенью взаимного влияния ячеек, что, в свою очередь, связано с уровнями и рангами ячеек.

Если на вход нейронной сети помимо условий внешней среды подаётся состояние только базовой ячейки, такая модель называется одноуровневой. Если, дополнительно, – первого или обоих рангов 1-го уровня – двухуровневой. В случае подачи на вход состояний группы ячеек хотя бы одного ранга 2-го или последующих уровней – многоуровневой. Наиболее часто используются двухуровневые ячеечно-нейросетевые модели как обеспечивающие достаточную точность вычислений при относительно простом составе входных переменных нейронной сети.

При необходимости усложнения состава входов нейронной сети последовательно добавляются состояния ячеек следующих рангов последнего задействованного уровня и только по исчерпании всех рангов берут новый уровень ячеек. Таким образом, в составе входных переменных нейронной сети не могут быть использованы состояния ячеек, расположенные дальше от центра (а значит в меньшей степени влияющие на состояние базовой ячейки), чем еще не задействованные, но ближе лежащие.

Если в составе входных переменных использованы состояния ячеек всех рангов последнего входящего в него уровня, такая модель называется полноуровневой. В противном случае модель – неполноуровневая.

По материалам статьи:
Дударов С. П., Папаев П. Л., Кудряшов А. Н., Карибова Ю. А. Ячеечно-нейросетевые модели в задачах экологической безопасности. – Искусственный интеллект и принятие решений, 2011, № 2. – с. 31–39.


Гость, оставишь комментарий?
Имя:*
E-Mail:


Свежее новое
  • Какие загадки таит в себе долларовая купюра
  • Правый верхний угол долларовой банкноты содержит изображение маленького непонятного существа. При рассмотрении в лупу оно кажется подобным птице.
  • Чем уникальна Лента Мебиуса и в каких сфера ее применяют
  • Явление свету такой уникальной вещь как лента Мебиуса не могла не родить вокруг себя различных мистических разговоров. Одни из них говорят о поезде
  • Парадокс гусеницы на канате: как можно двигаться бесконечно
  • Представим себе ситуацию в который один конец каната привязан к какому-либо неподвижному объекту, например фонарный столб или забор.
  • Что произошло с тунгусским метеоритом более века назад: тайны и доказанные факты
  • Ни одно другое событие ХХ века не окружено таким количеством легенд как тайна Тунгусского инцидента 1908 года. Ученые выдвинули несколько
  • Глицин: эффективный катализатор умственной деятельности или плацебо?
  • Любому человеку, занимающемуся интеллектуальным трудом, знакома эта ситуация: днем мы пытаемся активировать мозг, а вечером «уговариваем» его
Последние комментарии
5 лучших приложений искусственного интеллекта для вашего телефона Android
ха....не отвечают.....а программа выдает заложенный в исходном коде в ответ на запрос. то же самое умеет калькулятор, только там нужно нажимать равно
5 лучших приложений искусственного интеллекта для вашего телефона Android
Я считаю,что искусственный интеллект ,когда нибудь будет,а пока это программы которые выполняют определенный алгоритм команд,интеллект-это
Нейронные сети Кохонена
Спасибо огромное за доступность представленного материала. Особенно ценным есть простой пример, на котором описана работа модели. Читала на многих
Демонстрация онлайн обучения нейронной сети
сказки переобучения НС и потери сигнала на таких нервонных сетях чудненькие распознованеи ближе к зеро :)
Что ждёт человечество с учётом дальнейшего развития «искусственного» интеллекта?
Совсем недавно завершилась серия логических игр Go 3 года канулив лету а ИИшак все играет в го а люди как обычно пашут до самой молодости :)
Мы в социальных сетях
Статистика
6  
Всего статей 1582
2  
Всего комментариев 95
0  
Пользователей 75